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Erick Cantú-Paz and Chandrika Kamath
Centerfor AppliedScientificComputing
LawrenceLivermoreNational Laboratory

Livermore,CA 94551
cantupaz@llnl.gov

Abstract

The FIRST survey (Faint Images of the Ra-
dio Sky at Twenty-cm) is scheduled to cover
10,000squaredegrees of thenorthernandsouth-
ern galactic caps. Until recently, astronomers
classifiedradio-emitting galaxies through a vi-
sual inspectionof FIRST images. Besidesbe-
ing subjective, prone to error and tedious,this
manual approach is becoming infeasible: upon
completion, FIRSTwill include almosta million
galaxies. This paperdescribestheapplicationof
six methodsof evolving neuralnetworks (NNs)
with genetic algorithms (GAs) to identify bent-
double galaxies. Theobjective is to demonstrate
thatGAscansuccessfullyaddresssomecommon
problems in the application of NNs to classifi-
cationproblems,suchas training the networks,
choosingappropriatenetwork topologies,andse-
lectingrelevantfeatures.Theresultsindicatethat
mostof themethodsperform equallywell onour
data,but thefeatureselectionmethodgivessupe-
rior results.

1 INTRODUCTION

TheFaint Imagesof theRadioSky at Twenty-cm (FIRST)
survey (Beckeretal.,1995) startedin 1993 with thegoalof
producingtheradioequivalentof thePalomarObservatory
Sky Survey. UsingtheVeryLarge Array (VLA) at theNa-
tional RadioAstronomy Observatory, FIRST is scheduled
to cover morethan10,000 squaredegreesof the northern
andsoutherngalactic caps.At present,FIRSThascovered
about 8,000squaredegrees,producing more than32,000
two-million pixel images.At athreshold of 1mJy, thereare
approximately90radio-emitting galaxies,or radiosources,
in a typicalsquaredegree.

Radiosourcesexhibit a widerangeof morphological types

that provide cluesto the source’s class,emissionmecha-
nism,andpropertiesof thesurroundingmedium. Sources
with a bent-double morphology are of particular interest
asthey indicatethepresenceof clustersof galaxies, a key
project within the FIRST survey. FIRST scientistscur-
rently identify the bent-doublegalaxiesby visual inspec-
tion, which—besidesbeingsubjective, proneto error and
tedious—isbecoming increasingly infeasible asthesurvey
grows.

Our goal is to bring automation to the classificationof
galaxies usingtechniquesfrom datamining, suchasneu-
ral networks. Neuralnetworks (NNs) have beenusedsuc-
cessfullyto classifyobjectsin many astronomical applica-
tions(Odewahn et al.,1992;Storrie-Lombardi etal., 1992;
Adams& Woolley, 1994). However, the successof NNs
largely depends on their architecture,their training algo-
rithm, andthe choiceof featuresusedin training. Unfor-
tunately, determining the architecture of a neural network
is atrial-and-error process;thelearningalgorithmsmustbe
carefully tunedto thedata;andtherelevanceof featuresto
theclassificationproblem maynot beknown a priori. Our
objective is to demonstratethat genetic algorithms (GAs)
cansuccessfullyaddress the topology selection,training,
and featureselectionproblems, resultingin accuratenet-
works with good generalizationabilities. This paper de-
scribesthe application of six combinationsof genetical-
gorithmsandneural networks to theidentificationof bent-
double galaxies.

Thisstudyis oneof ahandful thatcomparesdifferentmeth-
odsto evolve neural netson thesamedomain (Roberts &
Turenga,1995; Siddiqi& Lucas,1998; Grönross,1998). In
contrast with otherstudiesthat limit their scopeto two or
threemethods, we usesix combinationsof GAs andNNs
and two measuresof classificationaccuracy to compare
the resultsof theevolvednetworks againsthand-designed
networks. The comparisonssuggest that someof the GA
andNN combinationsproducesignificantlymoreaccurate
classifiersthanwe couldobtaindesigning thenetworks by
hand.



The next sectionoutlinesthe problem of detectingbent-
double galaxies in the FIRST data. Section3 describes
severalpreviouscombinationsof GAs andNNs. Section4
presentsourexperimentsandreports theresults.Thepaper
concludeswith ourobservationsandplansfor futurework.

2 FIRST SURVEY DATA

Figure1 hasseveral examples of radio sources from the
FIRSTsurvey. While somebent-double galaxiesarerela-
tively simplein shape(examples(a) and(b)), others, such
astheones in examples(e) and(f), canberathercomplex.
Notethesimilarity betweenthebent-double in example (a)
andthenon-bent-doublein example (c).

DatafromFIRSTareavailableontheFIRSTwebsite(sun-
dog.stsci.edu).Therearetwo formsof dataavailable: im-
agemapsanda catalog.Theimagesin figure1 areclose-
upsof galaxies.Thecatalog(Whiteetal.,1997) is obtained
by fitting two-dimensionalGaussiansto eachradiosource
onanimagemap.Eachentryin thecatalogcorrespondsto
a singleGaussian.

We decided that, initially, we would identify the radio
sourcesandextractthefeaturesusingonly thecatalog.The
astronomersexpectedthat thecatalogwasa goodapprox-
imation to all but the mostcomplex of radiosources,and
severalof thefeaturesthey thought wereimportantin iden-
tifying bent-doubles wereeasilycalculatedfrom the cata-
log.

We identified the features for the bent-double problem
through extensive conversationswith FIRST astronomers.
Whenthey justified their decisionsof identifying a radio
sourceasa bent-double, they placedgreatimportanceon
spatialfeatures suchasdistancesandangles. Frequently,
the astronomers would characterize a bent-double as a
radio-emitting“core” with oneor moreadditional compo-
nentsat variousangles.

In the past,we have concentratedour work on instances
describedby threecatalogentries,becausewe have more
labeledexamples of this type. Our previous experience
with this datasuggestedthat the bestaccuraciesareusu-
ally achieved usingfeaturesextractedconsidering triplets
of catalogentries(as opposedto pairs or single entries).
Therefore, in the remainder of this paperwe focuson the
20 triplet featuresthatwe extracted. A full list of features
is describedelsewhereFodor et al. (2000).

Unfortunately, our training setis relatively small,contain-
ing 195examplesfor thethree-catalogentrysources.Since
the bent-andnon-bent-doubles mustbe manuallylabeled
by FIRSTscientists,putting together anadequatetraining
set is non-trivial. Moreover, scientistsareusuallysubjec-
tive in their labelingof galaxies,andthe astronomersof-

tendisagreein thehard-to-classifycases.Thereis alsono
ground truth we canuseto verify our results.This implies
that thetrainingsetitself is not very accurate,andthereis
a limit to theaccuracy we canobtain.

Among the 195 labeledexamples of 3-entry sources,28
arenon-bentand167arebentdouble galaxies.Thisunbal-
anceddistribution in the trainingsetpresentsproblemsin
estimatingtheaccuracy of theNNs,whicharediscussedin
section4.

3 GENETIC NEURAL NETWORKS

Geneticalgorithmsandneural networkshavebeenusedto-
getherin several ways.In particular, GAshavebeenusedto
searchfor theweightsof thenetwork, or to selectthemost
relevant featuresof the trainingdata. GAs have alsobeen
usedtodesignthestructureof thenetwork. It is well known
that to solve non-linearly separable problems,thenetwork
musthaveatleastonelayerbetweentheinputsandoutputs;
but determining thenumber andthesizeof thehiddenlay-
ersis mostlyamatterof trial anderror. GAshavebeenused
to searchfor theseparameters,aswell asfor thepatternof
connectionsandfor developmentalinstructionsto generate
a network. The interestedreadermayconsult the reviews
by Branke(1995), Schaffer (1994) andYao(1999).

3.1 TRAINING NETWORKS WITH GAs

Training a NN is an optimization task with the goal of
finding a setof weightsthat minimizesan error measure.
The searchspaceis high dimensionaland,depending on
the errormeasure,it may containnumerouslocal optima.
Somenetwork training algorithms, suchas backpropaga-
tion (BP), usesomeform of gradient search,andmayget
trapped in localoptima.

A straightforward combination of geneticalgorithms and
neural networksis to usetheGA to searchfor weightsthat
make thenetwork perform asdesired.Thearchitecture of
the network is fixed by the userprior to the experiment.
In this approach,eachindividual in the GA representsa
vectorwith all theweightsof thenetwork. We usedthese
two variants:� Use the weights found by the GA without any fur-

ther refinement (Caudell& Dolan,1989;Montana&
Davis, 1988; Whitley & Hanson, 1989).� Usethe GA to find a promising setof weightsfrom
which a gradient-basedmethodcanquickly reachan
optimum (Skinner& Broughton,1995). Themotiva-
tion is thatGAs quickly identify promisingregionsof
thesearchspace,but they donotfine-tuneparameters
very fast.



(a) (b) (c)

(d) (e) (f)

Figure1: Example radiosources:(a)-(b) Bent-doubles,(c)-(d) Non-bentdoubles,(e)-(f) Complex Sources

Theseapproachesarestraightforward andhave produced
goodresults.However, sinceadjacentlayersin a network
are usually fully connected, the total number of weights
is
�������	�

, where
�

is the number of units. Longer indi-
viduals usually require larger populations,which in turn
result in higher computationalcosts. The GA may be ef-
ficient for small networks, but this methodmay not scale
up well. Another drawback is the so-calledpermutations
problem (Radcliffe, 1990). The problem is that by per-
muting the hiddennodes of a network, the representation
of the weightsin the chromosomewould change,but the
network is functionally thesame.Somepermutationsmay
notbesuitablefor GAsbecausecrossover might easilydis-
rupt favorable combinationsof weights.To amelioratethis
problem,Thierenset al. (1991) suggestto placeincoming
andoutgoing weightsof a hiddennodenext to eachother,
whichwastheencoding we used.

3.2 FEATURE SELECTION

Besidessearchingfor weights,GAs maybeusedto select
thefeaturesthatareinputto theNN. Thetrainingexamples
may containfeatures that are irrelevant to the classifica-
tion,but it is generally unknown apriori whichfeaturesare
relevant. Avoiding irrelevant featuresis desirable not only
becausethey increasethesizeof thenetwork andthetrain-
ing time,but alsobecausethey mayreducetheaccuracy of
thenetwork.

UsingGAsto selectfeaturesis straightforward,usingwhat
is referredto asthewrapper approach:thechromosomeof

the individualscontainsonebit for eachfeature,and the
valueof thebit determineswhether thefeaturewill beused
in theclassification(Brill, Brown, & Martin, 1990; Broth-
erton& Simpson,1995). Theindividualsareevaluatedby
trainingthenetworks (with a predeterminedstructure)us-
ing thefeaturesubsetindicatedby thechromosomeandus-
ing theresultingaccuracy to calculatethefitness.

3.3 DESIGNING NETWORKS WITH GAs

As mentionedbefore, the topology of a network is crucial
to its performance. If a network hastoo few nodesand
connections,it maynot be ableto learnthe required con-
cept. On theotherhand, if a network hastoo many nodes
andconnections,it mayoverfit the trainingdataandhave
poorgeneralization.Therearetwo basicapproachesto use
a GA to designthe topology of a NN: usea directencod-
ing to specifyeveryconnectionof thenetwork or evolvean
indirectspecificationof theconnectivity.

Thekey ideabehinddirectencodings is that a neuralnet-
work mayberegardedasadirectedgraphwhereeachnode
represents aneuron andeachedgeis aconnection. A com-
mon method of representing directedgraphs is with a bi-
nary connectionmatrix: the 
��� -th elementof the matrix
is oneif thereis anedgebetweennodes
 and  , andzero
otherwise.The connectivity matrix canbe represented in
a GA simply by concatenatingits rows or columns (Miller
et al., 1989; Belew et al., 1990). Usingthis method, Whit-
ley et al. (1990) showed that the GA canfind topologies
that learn fasterthan the typical fully-connectedfeedfor-



ward network. The GA canbe explicitly biasedto favor
smallernetworks,whichcanbetrainedfaster.

A simplemethod to avoid specifying all theconnectionsis
to committo a particulartopology andlearning algorithm,
andthenusetheGA to find theparametervaluesthatcom-
pletethenetwork specification.For example, with a fully-
connectedfeedforward topology, the GA may searchfor
thenumberof layersandthenumber of neuronsperlayer.
Another examplewouldbeto codetheparametersof apar-
ticular learningalgorithm, suchasthemomentumandthe
learningrateof BP (Belew et al., 1990; Marshall& Har-
rison,1991). Of course,this methodis constrained by the
initial choice of topology andlearningalgorithm.

Another approachis to usea grammar to encode rulesthat
govern the developmentof a network. Kitano (1990) in-
troducedtheearliestgrammar-basedapproach. He useda
connectivity matrix to represent thenetwork,but insteadof
encoding thematrixdirectlyin thechromosome,thematrix
is generatedby a graph-rewriting grammar. The chromo-
somescontainrulesthatrewrite scalarelementsinto �����
matrices.

In this grammar, thereare 16 terminal symbolsthat are����� binary matrices. Thereare 16 non-terminal sym-
bols,andtheruleshave the form

�����
, where

�
is one

of thescalarnon-terminals,and
�

is a ����� matrixof non-
terminals.Thereis an arbitrarily designatedstartsymbol,
andthenumberof rewriting stepsis fixedby theuser.

To evaluatethefitness,therulesaredecodedandthecon-
nectivity matrix is developed by applying all the rules
that matchnon-terminalsymbols. Then,the connectivity
matrix is interpretedand the network is constructed and
trainedwith BP.

Otherexamplesof grammar-baseddevelopmentalsystems
aretheworkof BoersandKuiper (1992) with Lindenmayer
systems, Gruau’s “cellular encoding” method (Gruau,
1992), andthe systemof Nolfi, Elman,andParisi (1994)
thatsimulatescell growth, migration, anddifferentiation.

4 EXPERIMENT S

This sectiondetailsthe experimentalmethods andthe re-
sultsthatwe obtainedwith six combinationsof neural net-
worksandgeneticalgorithms.

Theprogramswerewritten in C++ andcompiled with g++
version2.96. The experimentswereexecutedon a Linux
workstationwith dual1.5 GHz Intel Xeonprocessorsand
512Mb of memory.

All the GAs useda population of 50 individuals. We
useda simpleGA with binary encoding, pairwisetourna-
mentselection,andmulti-point crossover. Thenumber of

crossover points wasvariedin eachexperiment according
to thelengthof thechromosomes,� . In all cases,theprob-
ability of crossover was1, andtheprobability of mutation
wasset to ����� . The initial population wasinitialized uni-
formly at random.

Theexperimentsusedfeedforwardnetworks with onehid-
denlayer. All neuronsareconnectedto a “bias” unit with
constantoutput of 1.0.Unlessspecifiedotherwise,theout-
putunitsareconnectedtoall thehiddenunits,whichin turn
areconnectedto all the inputs. In feedforward operation,
theunitscompute theirnetactivationas� �"!$# %& ' (*)�+ '-,$'/.0,$1 �
where 2 is thenumberof inputsto theneuron, + ' is anin-
put and

, '
is the corresponding weight,

, 1
is the weight

corresponding to the“bias” unit. Eachunit emitsanoutput
according to 3 � � �"! � #4!657� 8 �:9<; � �=! � � where

9
is a user-

specifiedcoefficient. Simplebackpropagationwasusedin
someof theexperiments.Theweightsfrom thehiddento
the output layer were updatedusing > ,@?6A #CBED ?�FGA #B ��H ?�IKJ�? � 3/L � � �=!NM � FGA � where B denotesthe learning rate,O

indexestheoutput units,
H ?

thedesiredoutput,

JP?
theac-

tualoutput, 3 L is thederivativeof 3 , and

FPA
is theoutput of

the  -th hiddenunit. Theweightsfrom the 
 -th input to the
hidden layerwereupdatedusing

> , AN' #QBSRUT&? (V) , ?NA D ?XW 3 L � �Y�"! A � + '6Z
In all experiments,eachfeaturein thedatawaslinearlynor-
malizedto theinterval [ I �7�X�"\ . Thetypeof galaxy wasen-
codedin oneoutput value(-1 for bentand1 for non-bent).
Whenbackpropagation wasused,the examples werepre-
sentedin random order for 20 epochs. All the resultsre-
portedareaverages over 10 runs of thealgorithms. Com-
parisons aremadeusingstandard

H
-testswith 95% confi-

dence.

4.1 FITNESS CALCULA TION

Oneof the crucial designdecisionsfor the application of
GAs is the calculationof fitnessvaluesfor eachmember
of thepopulation. Sincewe areinterestedin networks that
predict accurately thetypeof galaxiesnot usedin training,
thefitnesscalculation mustincludeanestimateof thegen-
eralizationability of thenetworks.

Therearemultiple waysto estimategeneralization. Since
we do not have muchtrainingdata,hold-out methods (di-
viding thedatainto trainingandtestingsetsandperhapsan
additional validation set)arenotpractical. To calculatethe



fitness,weusedtheaccuracy estimateof five-fold crossval-
idation trials. In this method, thedata ] is dividedinto ^
non-overlappingsets,] ) � Z_Z`Z ]�a . At eachiteration 
 (from
1 to ^ ), thenetwork is trainedwith ]cb�] '

andtestedon ] '
.

A betterestimateof accuracy would be to usean average
of multiple crossvalidation experiments,but we found the
costexcessive.

To correct for theunbalanceddistributionof bentandnon-
bentexamples in our trainingdata,we calculatetheaccu-
racy asthegeometric meanof theaccuraciesof eachclass
of galaxy (bent and non-bent) (Kubat & Matwin, 1997).
Usingthegeometricmeangivesequalweightto theaccu-
raciesonbothtypesof galaxiesin theoverall performance.

4.2 TRAINING NETWORKS WITH GAs

We implementedthefirst of themethodsdescribedin sec-
tion 3.1: the GA wasusedto find the network’s weights.
Thenetwork had20 inputsthat correspondto eachof the
features in thedata,25hidden nodes,andoneoutput. Each
weightwasrepresentedwith 10 bits, andtherange of pos-
sibleweights was [ I �XdY�=�Xde\ .
For this experiment, the GA useda population of 50 in-
dividuals, eachwith a lengthof � # ^7^ �Xd bits (thereare
551 total weights). The number of crossover points was
setat 25, andthe mutation ratewas0.00018 ( fg����� ). As
in all experiments,pairwisetournamentselectionwithout
replacementwasused.

The secondtrainingmethoddescribedin section3.1 is to
run BP usingtheweightsrepresentedby theindividualsin
theGA to initialize thenetwork. Thenetwork architecture
andGA parameterswereidenticalto the previous experi-
ment. As in all theexperiments,20 epochsof backpropa-
gationwereusedto traineachnetwork.

The entries WEIGHTS and WEIGHTS+BP in table 1
presenttheaverageaccuracy of thebestnetworks found in
eachrun of theGA for thesetwo setsof experiments.The
resultshighlightedin bold in thetablesarethebestresults
andthosenot significantlyworsethanthebest(according
to the

H
-test,which maydetectmoredifferencesthanthere

actuallyexist). The addition of BP producesmodest im-
provementsin the overall accuracy, which arenot signifi-
cantlybetterthanusingtheGA alone.

4.3 FEATURE SELECTION

Thenext combinationof GAs andNNs is to usetheGA to
selectthe featuresthat will be usedto train the networks,
asdescribedin section3.2.As in previousexperiments,we
set the number of hiddenunits to 25, the learningrate tod Z � and

9
to 0.4.Thenetworksweretrainedfor 20epochs.

Ourdatahas20features,andthereforethechromosomesin

theGA are20 bits long. TheGA usedone-pointcrossover
andthesameparameters asin previous experiments.The
accuracy resultsarelabeledFEATURE SEL andaresignifi-
cantlybetterthantheotherresultsin table1.

The GAs consistentlyselectedabout half of the features,
andfrequentlyselectedfeatures thatappearto be relevant
to the identificationof bent-doublegalaxies,suchassym-
metrymeasuresandangles.

4.4 DESIGNING NETWORKS WITH GAs

In thefirst application of GAs to network design,the GA
is usedto find thenumberof hiddenunits, theparameters
for backpropagation, andtherangeof initial weightsasde-
scribedin section3.3. Thelearningratewasencodedwith
four bits andthe range of possiblevalueswas [ dY�=�=\ . The
coefficient

9
for the activation function wasalsoencoded

with four bitsandits rangewas [ dY�=�"\ . Theupperandlower
ranges for the initial weightswereencoded with five bits
eachandwereallowed to vary in [ I �	d �6d�\ and [ d �X�Xde\ , re-
spectively. Finally, thenumber of hiddenunitswasrepre-
sentedwith sevenbitsandcouldtake valuesin [ dY�=�	�Ph	\ .
After extracting theparametersfrom achromosome,a net-
work wasbuilt andinitialized according to theparameters
andtrainedwith 20 epochsof BP. Thereis no explicit bias
to prefer smallernetworks, but thereis animplicit biasto-
ward networks that can learnquickly, sincewe areusing
only 20 epochs of BP. It is probable that small networks
learnfasterthanlargerones,andsoit is likely thattheGA
favorssmallnetworks.

TheGA usedtwo-point crossoverandthesameparameters
asprevious experiments.Theaccuracy resultsarelabeled
PARAMETERS in table1. Onaverage,thebestlearningrate
found by theGA was0.82 (with 0.06std.error), which is
higher than the usualrecommendation of 0.1–0.2 (Duda,
Hart,& Stork,2001). Perhapsthelearningrateis high be-
causeof the implicit bias for learningquickly. This bias
may alsoexplain the average number of hiddenunits be-
ing relatively small at 15.6 (std. error 2.8). The average9

was 0.16 (0.01), and the rangeof initial weightswas[ Iji Z ^E�7� i Z k ^�\ (both with std.errorsof 0.4).

Thenext experimentusedthe GA to searchfor a connec-
tivity matrixasdescribed in section3.3.Wefixedthenum-
berof hiddenunits to 25, the learningrateto d Z � and

9
to

0.4.Theneuronsarenumberedconsecutively startingwith
the inputsand followed by the hidden units andoutputs.
The connectivity matrix is encodedby concatenating its
rows.Sinceweallow directconnectionsbetweentheinputs
andtheoutputs, thestringlengthis

�-l 
m2n2Po � .�pGq Hsr q HutG��;
 �Er q Hut . l 
v2P2Po ��; pGq Hsr q Hut # � �ew ; �ed � . � �7^ ; � � # ^ k ^
bits. For this longerstring,weuse10crossoverpoints,and
thesameGA parameters asbefore.



We also implementedKitano’s graph rewriting grammar
method. We limited the number of rewriting stepsto 6,
resultingin networkswith atmost64units.Sincethechro-
mosomesencode four �x�y� binary matricesfor eachof the
16 rules,the string lengthis 256bits. The GAs usedfive
crossoverpoints.

4.5 COMPARISON AND DISCUSSION

Table1 summarizestheresultsobtainedwith eachmethod.
Theresultsshow largedifferencesamongthevariousmeth-
odsin the accuracy ratefor non-bentsandthe overall ac-
curacy. Clearly, the feature selectionmethodhadthebest
overall accuracy andthebestaccuracy on thenon-bents.

We alsoperformednumerous experimentswith networks
designedby hand.Thebestparametersthatwe couldfind
for 20 epochs of backpropagation were thoseusedin the
experimentswith theGAs:

9 # d Z � , the learningratewas
0.4,andthenumber of hiddenwas25. Theaverage of 10
10-foldcrossvalidation experimentsresultedin anaccuracy
on the non-bentsof only 16.4% (1.7) andon the bentsis
99.69% (0.16). The overall accuracy estimatedwith the
geometric meanis a disappointing 23.41% (2.02).

Increasingthenumber of trainingepochsto 100raisedthe
standardthe geometric meanaccuracy to 72.69% (0.32).
The accuracy on the non-bentsalso improved to 56.7%,
while the accuracy on the bents decreasedslightly to
94.38%.

5 CONCLUSIONS

This paper presenteda comparisonof six combinationsof
GAsandNNsfor theidentificationof bent-double galaxies
in theFIRSTsurvey. Ourexperimentssuggestthat,for this
application, somecombinationsof GAs andNNs canpro-
duceaccurateclassifiersthatarecompetitivewith networks
designedbyhand.Forourapplication,wefoundfew differ-
encesamong the GA andNN combinationsthat we tried.
Theonly consistentlybestmethod wasto usetheGA to se-
lect thefeaturesusedto train thenetworks,whichsuggests
thatsomeof thefeaturesin thetrainingsetareirrelevant.

Thereareseveralavenuesto extendthis work. Thehighly
unbalancedtrainingsetpresentssomedifficultiesthatcould
be avoided or amelioratedby including more examples
of the minority class. Extending the training set is non-
trivial, becausethelabelingis subjectiveanddisagreements
among theexperts arecommon.

Other optimization techniques, evolutionary and tradi-
tional, canbe usedto train NNs. In this paperwe useda
simplegenetic algorithmwith a binaryencoding, but other
evolutionaryalgorithmsoperateonvectorsof realnumbers,
which canbedirectly mappedto thenetwork’s weightsor

theBPparameters(butnottoaconnectivity matrix,agram-
mar, or a featureselectionapplication). Thereare other
combinationsof GAs andNNs that we did not includein
this study, but appearpromising. For instance,sinceevo-
lutionary algorithms usea population of networks, a nat-
ural extension of this work would be to useevolutionary
algorithms to createensemblesthat combine several NNs
to improve theaccuracy of classifications.

Themaindisadvantageof usinggeneticalgorithmsin com-
binationwith neural networks is thelongcomputationtime
required. This canbe an obstacleto applying thesetech-
niques to largerdatasets,but therearenumerous alterna-
tivesto improvetheperformanceof geneticalgorithms.For
instance,wecouldapproximatethefitnessevaluationusing
samplingor wecanexploit theinherentlyparallelnatureof
GAs usingmultiple processors.
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Method Bent-Doubles Non-Bent Overall
WEIGHTS 86.34 (2.83) 78.01 (4.13) 80.98(2.41)

WEIGHTS+BP 91.89 (0.67) 75.23 (0.87) 81.68(0.53)
FEATURE SEL 92.99 (0.55) 83.65 (1.41) 87.51(0.77)
PARAMETERS 92.35 (0.89) 69.13 (1.56) 78.76(0.57)

MATRIX 93.58 (0.46) 70.77 (1.34) 80.22(0.69)
GRAMMAR 92.84 (0.69) 73.73 (1.40) 81.78(0.72)

Table1: Meanaccuracieson thebentandnon-bentdoublesandoverall accuracy for differentcombinationsof GAs and
NNs usingthegeometricmeanof class-wiseaccuracies asfitness.Thenumbers in parenthesisarethestandarderrors,and
theresultsin boldarethebestandthosenotsignificantlyworsethanthebest.
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